Détail de l'auteur
Auteur Leonardo Gigli |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Contributions to graph-based hierarchical analysis for images and 3D point clouds / Leonardo Gigli (2021)
Titre : Contributions to graph-based hierarchical analysis for images and 3D point clouds Type de document : Thèse/HDR Auteurs : Leonardo Gigli, Auteur ; Beatriz Marcotegui, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2021 Importance : 177 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université PSL, Spécialité : Morphologie MathématiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] arbre aléatoire minimum
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] morphologie mathématique
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] réseau neuronal de graphes
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] texture d'image
[Termes IGN] théorie des graphesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Graphs are powerful mathematical structures representing a set of objects and the underlying links between pairs of objects somehow related. They are becoming increasingly popular in data science in general and in particular in image or 3D point cloud analysis. Among the wide spectra of applications, they are involved in most of the hierarchical approaches.Hierarchies are particularly important because they allow us to efficiently organize the information required and to analyze the problems at different levels of detail. In this thesis, we address the following topics. Many morphological hierarchical approaches rely on the Minimum Spanning Tree (MST). We propose an algorithm for MST computation in streaming based on a graph decomposition strategy. Thanks to this decomposition, larger images can be processed or can benefit from partial reliable information while the whole image is not completely available.Recent LiDAR developments are able to acquire large-scale and precise 3D point clouds. Many applications, such as infrastructure monitoring, urban planning, autonomous driving, precision forestry, environmental assessment, archaeological discoveries, to cite a few, are under development nowadays. We introduce a ground detection algorithm and compare it with the state of the art. The impact of reducing the point cloud density with low-cost scanners is studied, in the context of an autonomous driving application. Finally, in many hierarchical methods similarities between points are given as input. However, the metric used to compute similarities influences the quality of the final results. We exploit metric learning as a complementary tool that helps to improve the quality of hierarchies. We demonstrate the capabilities of these methods in two contexts. The first one,a texture classification of 3D surfaces. Our approach ranked second in a task organized by SHREC’20 international challenge. The second one learning the similarity function together with the optimal hierarchical clustering, in a continuous feature-based hierarchical clustering formulation. Note de contenu : Introduction
1- Graph theory and clustering
2- Point clouds
3- Ground and road detection
4- Minimum spanning tree for data streams
5- Metric learning
6- Towards Morphological Convolutions on Graphs
ConclusionsNuméro de notice : 28623 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Morphologie Mathématique : Paris Sciences et Lettres : 2021 Organisme de stage : Centre de Morphologie Mathématique DOI : sans En ligne : https://pastel.hal.science/tel-03512298/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99543