Détail de l'auteur
Auteur Hauke Schramm |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Self-attention and generative adversarial networks for algae monitoring / Nhut Hai Huynh in European journal of remote sensing, vol 55 n° 1 (2022)
[article]
Titre : Self-attention and generative adversarial networks for algae monitoring Type de document : Article/Communication Auteurs : Nhut Hai Huynh, Auteur ; Gordon Boër, Auteur ; Hauke Schramm, Auteur Année de publication : 2022 Article en page(s) : pp 10 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algue
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] plancton
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Water is important for the natural environment and human health. Monitoring algae concentrations yield information on the water quality. Compared with in situ measurements of water quality parameters, which are often complex and expensive, remote sensing techniques, using hyperspectral data analysis, are fast and cost-effective. The objectives of this study are (1) to estimate the algae concentrations from hyperspectral data using deep learning techniques, (2) to investigate the applicability of attention mechanisms in the analysis of hyperspectral data, and (3) to augment the training data using generative adversarial networks (GANs). The results show that the accuracy of deep learning techniques is 7.6% higher than that of simpler artificial neural networks. Compared to noise injection and principal component analysis-based data augmentation, the use of a GAN-based data augmentation method significantly improves the accuracy of algae concentration estimates (>5%). In addition, models with added attention mechanisms yield an on average 3.13% higher accuracy than those without attention techniques. This result demonstrates the improvement of spectral features of artificial hyperspectral data based on the self-attention approach, revealing the potential of attention techniques in hyperspectral remote sensing. Numéro de notice : A2022-097 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2021.2010605 Date de publication en ligne : 02/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2010605 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99547
in European journal of remote sensing > vol 55 n° 1 (2022) . - pp 10 - 22[article]