Détail de l'auteur
Auteur Silvia Serrao-Neumanna |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study Type de document : Article/Communication Auteurs : W.D.K.V. Nandasena, Auteur ; Lars Brabyn, Auteur ; Silvia Serrao-Neumanna, Auteur Année de publication : 2023 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] matrice de co-occurrence
[Termes IGN] occupation du sol
[Termes IGN] Sri LankaRésumé : (auteur) Global land cover classifications may lead to the loss of important local and national nuances such as forest and agroforestry classes. These classes are important to local contexts because they contribute to sustainable land management systems. This paper demonstrates the application of Sentinel-2A satellite images, elevation data, and the Google Earth Engine platform to generate more detailed, specialist land cover classification for forestry classes important in Sri Lanka deriving ten spectral, 16 textural, and three topographical features from the input datasets. The random forest classification model discriminates vegetation types as forest, forest plantations, shrub, grassland, home garden, and cultivation with an overall accuracy of 94% and kappa value of 0.91. Results indicate the elevation feature contributes the most to discriminate forest and agroforestry classes, and red band (664.6 nm) textural metrics derived from grey-level co-occurrence matrix analysis are more useful for separating the home garden from other land cover classes. Numéro de notice : A2023-094 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.2022010 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.1080/10106049.2021.2022010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99617
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]