Détail de l'auteur
Auteur Ákos Pintér |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Polynomials: special polynomials and number-theoretical applications Type de document : Monographie Auteurs : Ákos Pintér, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 154 p. Format : 17 x 25 cm ISBN/ISSN/EAN : 978-3-0365-0819-1 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Mathématique
[Termes IGN] distribution binomiale
[Termes IGN] équation polynomiale
[Termes IGN] fonction de base radiale
[Termes IGN] formule d'Euler
[Termes IGN] interpolation polynomiale
[Termes IGN] théorème de Bernstein
[Termes IGN] trigonométrieRésumé : (éditeur) Polynomials play a crucial role in many areas of mathematics including algebra, analysis, number theory, and probability theory. They also appear in physics, chemistry, and economics. Especially extensively studied are certain infinite families of polynomials. Here, we only mention some examples: Bernoulli, Euler, Gegenbauer, trigonometric, and orthogonal polynomials and their generalizations. There are several approaches to these classical mathematical objects. This Special Issue presents nine high quality research papers by leading researchers in this field. I hope the reading of this work will be useful for the new generation of mathematicians and for experienced researchers as well. Note de contenu : 1- Two variables Shivley’s matrix polynomial
2- Some symmetric identities for degenerate Carlitz-type (p, q)-Euler numbers and polynomials
3- Symmetric identities for Carlitz-type higher-order degenerate (p, q)-Euler numbers and polynomials
4- Durrmeyer-type generalization of parametric Bernstein operators
5- A collocation method using radial polynomials for solving partial differential equations
6- On the decomposability of the linear combinations of Euler polynomials with odd degrees
7- Structure of approximate roots based on symmetric properties of (p, q)-cosine and (p, q)-sine Bernoulli polynomials
8- Explicit properties of q-cosine and q-sine Euler polynomials containing symmetric structures
9- Certain results for the twice-iterated 2D q-Appell polynomialsNuméro de notice : 28632 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0819-1 En ligne : https://doi.org/10.3390/books978-3-0365-0819-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99635