Détail de l'auteur
Auteur Nasir G. Gharaibeh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)
[article]
Titre : Assessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data Type de document : Article/Communication Auteurs : Cheng-Chun Lee, Auteur ; Nasir G. Gharaibeh, Auteur Année de publication : 2022 Article en page(s) : n° 101755 Note générale : bibliogrphie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] drainage
[Termes IGN] écoulement des eaux
[Termes IGN] Houston (Texas)
[Termes IGN] inondation
[Termes IGN] lidar mobile
[Termes IGN] modèle numérique de surface
[Termes IGN] ruissellement
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Surface drainage at the neighborhood and street scales plays an important role in conveying stormwater and mitigating urban flooding. Surface drainage at the local scale is often ignored due to the lack of up-to-date fine-scale topographical information. This paper addresses this issue by providing a novel method for evaluating surface drainage at the neighborhood and street scales based on mobile lidar (light detection and ranging) measurements. The developed method derives topographical properties and runoff accumulation by applying a semantic segmentation (SS) model (a computer vision technique) and a flow direction model (a hydrology technique) to lidar data. Fifty lidar images representing 50 street blocks were used to train, validate, and test the SS model. Based on the test dataset, the SS model has 80.3% IoU and 88.5% accuracy. The results suggest that the proposed method can effectively evaluate surface drainage conditions at both the neighborhood and street scales and identify problematic low points that could be susceptible to water ponding. Municipalities and property owners can use this information to take targeted corrective maintenance actions. Numéro de notice : A2022-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101755 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101755 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99661
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101755[article]