Détail de l'auteur
Auteur Wendi Zhao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detecting individuals' spatial familiarity with urban environments using eye movement data / Hua Liao in Computers, Environment and Urban Systems, vol 93 (April 2022)
[article]
Titre : Detecting individuals' spatial familiarity with urban environments using eye movement data Type de document : Article/Communication Auteurs : Hua Liao, Auteur ; Wendi Zhao, Auteur ; Changbo Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] service fondé sur la position
[Termes IGN] zone urbaine
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The spatial familiarity of environments is an important high-level user context for location-based services (LBS). Knowing users' familiarity level of environments is helpful for enabling context-aware LBS that can automatically adapt information services according to users' familiarity with the environment. Unlike state-of-the-art studies that used questionnaires, sketch maps, mobile phone positioning (GPS) data, and social media data to measure spatial familiarity, this study explored the potential of a new type of sensory data - eye movement data - to infer users' spatial familiarity of environments using a machine learning approach. We collected 38 participants' eye movement data when they were performing map-based navigation tasks in familiar and unfamiliar urban environments. We trained and cross-validated a random forest classifier to infer whether the users were familiar or unfamiliar with the environments (i.e., binary classification). By combining basic statistical features and fixation semantic features, we achieved a best accuracy of 81% in a 10-fold classification and 70% in the leave-one-task-out (LOTO) classification. We found that the pupil diameter, fixation dispersion, saccade duration, fixation count and duration on the map were the most important features for detecting users' spatial familiarity. Our results indicate that detecting users' spatial familiarity from eye tracking data is feasible in map-based navigation and only a few seconds (e.g., 5 s) of eye movement data is sufficient for such detection. These results could be used to develop context-aware LBS that adapt their services to users' familiarity with the environments. Numéro de notice : A2022-121 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101758 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101758 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99663
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101758[article]