Détail de l'auteur
Auteur Eze O. Amadi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 1 (January 2022)
[article]
Titre : Examining the integration of Landsat operational land imager with Sentinel-1 and vegetation indices in mapping southern yellow pines (Loblolly, Shortleaf, and Virginia pines) Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Eze O. Amadi, Auteur Année de publication : 2022 Article en page(s) : pp 29 - 38 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] canopée
[Termes IGN] carte de la végétation
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] intégration de données
[Termes IGN] inventaire forestier local
[Termes IGN] Pinus (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] précision de la classification
[Termes IGN] Soil Adjusted Vegetation IndexRésumé : (Auteur) The mapping of southern yellow pines (loblolly, shortleaf, and Virginia pines) is important to supporting forest inventory and the management of forest resources. The overall aim of this study was to examine the integration of Landsat Operational Land Imager (OLI ) optical data with Sentinel-1 microwave C-band satellite data and vegetation indices in mapping the canopy cover of southern yellow pines. Specifically, this study assessed the overall mapping accuracies of the canopy cover classification of southern yellow pines derived using four data-integration scenarios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation indices derived from satellite data—normalized difference vegetation index, soil-adjusted vegetation index, modified soil-adjusted vegetation index, transformed soil-adjusted vegetation index, and infrared percentage vegetation index; and 4) Landsat OLI with Sentinel-1 and vegetation indices. The results showed that the integration of Landsat OLI reflectance bands with Sentinel-1 backscattering coefficients and vegetation indices yielded the best overall classification accuracy, about 77%, and standalone Landsat OLI the weakest accuracy, approximately 67%. The findings in this study demonstrate that the addition of backscattering coefficients from Sentinel-1 and vegetation indices positively contributed to the mapping of southern yellow pines. Numéro de notice : A2022-062 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00024R2 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.14358/PERS.21-00024R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99706
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 1 (January 2022) . - pp 29 - 38[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022011 SL Revue Centre de documentation Revues en salle Disponible