Détail de l'auteur
Auteur Julian Haguenauer |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A geographically weighted artificial neural network / Julian Haguenauer in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
[article]
Titre : A geographically weighted artificial neural network Type de document : Article/Communication Auteurs : Julian Haguenauer, Auteur ; Marco Helbich, Auteur Année de publication : 2022 Article en page(s) : pp 215 - 235 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] analyse de sensibilité
[Termes IGN] Autriche
[Termes IGN] coût
[Termes IGN] évaluation foncière
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] régression géographiquement pondérée
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal artificielRésumé : (auteur) While recent developments have extended geographically weighted regression (GWR) in many directions, it is usually assumed that the relationships between the dependent and the independent variables are linear. In practice, however, it is often the case that variables are nonlinearly associated. To address this issue, we propose a geographically weighted artificial neural network (GWANN). GWANN combines geographical weighting with artificial neural networks, which are able to learn complex nonlinear relationships in a data-driven manner without assumptions. Using synthetic data with known spatial characteristics and a real-world case study, we compared GWANN with GWR. While the results for the synthetic data show that GWANN performs better than GWR when the relationships within the data are nonlinear and their spatial variance is high, the results based on the real-world data demonstrate that the performance of GWANN can also be superior in a practical setting. Numéro de notice : A2022-162 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1871618 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1871618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99785
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 215 - 235[article]