Détail de l'auteur
Auteur Jens Kersten |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
[article]
Titre : GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules Type de document : Article/Communication Auteurs : Xuke Hu, Auteur ; Hussein S. Al-Olimat, Auteur ; Jens Kersten, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 310 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] classification hybride
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données topographiques
[Termes IGN] extraction de données
[Termes IGN] géobalise
[Termes IGN] microblogue
[Termes IGN] OpenStreetMap
[Termes IGN] répertoire toponymique
[Termes IGN] toponyme
[Termes IGN] TwitterRésumé : (auteur) Extracting precise location information from microblogs is a crucial task in many applications, particularly in disaster response, revealing where damages are, where people need assistance, and where help can be found. A crucial prerequisite to location extraction is place name extraction. In this paper, we present GazPNE: a hybrid approach to place name extraction which fuses rules, gazetteers, and deep learning techniques without requiring any manually annotated data. The core of the approach is to learn the intrinsic characteristics of multi-word place names with deep learning from gazetteers. Specifically, GazPNE consists of a rule-based system to select n-grams from the microblogs that potentially contain place names, and a C-LSTM model that decides if the selected n-gram is a place name or not. The C-LSTM is trained on 388.1 million examples containing 6.8 million positive examples with US and Indian place names extracted from OpenStreetMap and 381.3 million negative examples synthesized by rules. We evaluate GazPNE against the SoTA on a manually annotated 4,500 tweet dataset which contains 9,026 place names from three foods: 2016 in Louisiana (US), 2016 in Houston (US), and 2015 in Chennai (India). GazPNE achieves SotA performance on the test data with an F1 of 0.84. Numéro de notice : A2022-164 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1947507 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1947507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99787
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 310 - 337[article]