Détail de l'auteur
Auteur Jihao Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
VD-LAB: A view-decoupled network with local-global aggregation bridge for airborne laser scanning point cloud classification / Jihao Li in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
[article]
Titre : VD-LAB: A view-decoupled network with local-global aggregation bridge for airborne laser scanning point cloud classification Type de document : Article/Communication Auteurs : Jihao Li, Auteur ; Martin Weinmann, Auteur ; Xian Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 19 - 33 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agrégation de détails
[Termes IGN] apprentissage profond
[Termes IGN] précision de la classification
[Termes IGN] qualité du modèle
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) Airborne Laser Scanning (ALS) point cloud classification is a valuable and practical task in the fields of photogrammetry and remote sensing. It takes an extremely important role in many applications of surveying, monitoring, planning, production and living. Recently, driven by the wave of deep learning, the classification of ALS point clouds has also been gradually shifting from traditional feature design to careful deep network architecture construction. Although significant progress has been achieved by leveraging deep learning technology, there are still some matters demanding prompt solution: (1) the coupling phenomenon of high-level semantic features from multiple field-of-views; (2) information propagation without aggregated local–global features in different levels of symmetrical structure; (3) quite serious class-imbalanced distribution problems in large-scale ALS point clouds. In this paper, to tackle these matters, we propose a novel View-Decoupled Network with Local–global Aggregation Bridge (VD-LAB) model. More concretely, a View-Decoupled (VD) grouping method is set at the deepest layer of the network. Then, we establish a Local–global Aggregation Bridge (LAB) between down-sampling path and up-sampling path of the same level. After that, a Self-Amelioration (SA) loss is taken as the optimization objective to train the whole model in an end-to-end manner. Extensive experiments on four challenging ALS point cloud datasets (LASDU, US3D, ISPRS 3D and GML) demonstrate that our VD-LAB is able to achieve state-of-the-art performance in terms of Overall Accuracy (OA) and mean -score (e.g., reaching 88.01% and 78.42% for LASDU dataset, respectively) with very few model parameters and it possesses a strong generalization capability. In addition, the visualization of achieved results also reveals more satisfactory classification for some categories, such as Water in the US3D dataset and Powerline in the ISPRS 3D dataset. Ultimately, the effect of each module in VD-LAB is assessed in detailed ablation analyses as well. Numéro de notice : A2022-067 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.012 Date de publication en ligne : 10/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.012 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99789
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 19 - 33[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt