Détail de l'auteur
Auteur Rui Zhai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A method of vision aided GNSS positioning using semantic information in complex urban environment / Rui Zhai in Remote sensing, vol 14 n° 4 (February-2 2022)
[article]
Titre : A method of vision aided GNSS positioning using semantic information in complex urban environment Type de document : Article/Communication Auteurs : Rui Zhai, Auteur ; Yunbin Yuan, Auteur Année de publication : 2022 Article en page(s) : n° 869 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] filtre de Kalman
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] information sémantique
[Termes IGN] milieu urbain
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] segmentation sémantique
[Termes IGN] système de numérisation mobile
[Termes IGN] vision par ordinateurRésumé : (auteur) High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments. Numéro de notice : A2022-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040869 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040869 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99792
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 869[article]