Détail de l'auteur
Auteur Jiawei Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests / Chong Zhang in Remote sensing, vol 14 n° 4 (February-2 2022)
[article]
Titre : Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests Type de document : Article/Communication Auteurs : Chong Zhang, Auteur ; Jiawei Zhou, Auteur ; Huiwen Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] échantillonnage de données
[Termes IGN] entropie
[Termes IGN] estimation quantitative
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] peuplement mélangé
[Termes IGN] Pinophyta
[Termes IGN] segmentation d'imageRésumé : (auteur) High-resolution UAV imagery paired with a convolutional neural network approach offers significant advantages in accurately measuring forestry ecosystems. Despite numerous studies existing for individual tree crown delineation, species classification, and quantity detection, the comprehensive situation in performing the above tasks simultaneously has rarely been explored, especially in mixed forests. In this study, we propose a new method for individual tree segmentation and identification based on the improved Mask R-CNN. For the optimized network, the fusion type in the feature pyramid network is modified from down-top to top-down to shorten the feature acquisition path among the different levels. Meanwhile, a boundary-weighted loss module is introduced to the cross-entropy loss function Lmask to refine the target loss. All geometric parameters (contour, the center of gravity and area) associated with canopies ultimately are extracted from the mask by a boundary segmentation algorithm. The results showed that F1-score and mAP for coniferous species were higher than 90%, and that of broadleaf species were located between 75%–85.44%. The producer’s accuracy of coniferous forests was distributed between 0.8–0.95 and that of broadleaf ranged in 0.87–0.93; user’s accuracy of coniferous was distributed between 0.81–0.84 and that of broadleaf ranged in 0.71–0.76. The total number of trees predicted was 50,041 for the entire study area, with an overall error of 5.11%. The method under study is compared with other networks including U-net and YOLOv3. Results in this study show that the improved Mask R-CNN has more advantages in broadleaf canopy segmentation and number detection. Numéro de notice : A2022-168 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14040874 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99793
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 874[article]