Détail de l'auteur
Auteur Morgan Laurent |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Neural map style transfer exploration with GANs / Sidonie Christophe in International journal of cartography, vol 8 n° 1 (March 2022)
[article]
Titre : Neural map style transfer exploration with GANs Type de document : Article/Communication Auteurs : Sidonie Christophe , Auteur ; Samuel Mermet , Auteur ; Morgan Laurent, Auteur ; Guillaume Touya , Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : pp 18 - 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] grille d'échantillonnage
[Termes IGN] orthoimage
[Termes IGN] représentation cartographique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] style cartographique
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Neural Style Transfer is a Computer Vision topic intending to transfer the visual appearance or the style of images to other images. Developments in deep learning nicely generate stylized images from texture-based examples or transfer the style of a photograph to another one. In map design, the style is a multi-dimensional complex problem related to recognizable visual salient features and topological arrangements, supporting the description of geographic spaces at a specific scale. The map style transfer is still at stake to generate a diversity of possible new styles to render geographical features. Generative adversarial Networks (GANs) techniques, well supporting image-to-image translation tasks, offer new perspectives for map style transfer. We propose to use accessible GAN architectures, in order to experiment and assess neural map style transfer to ortho-images, while using different map designs of various geographic spaces, from simple-styled (Plan maps) to complex-styled (old Cassini, Etat-Major, or Scan50 B&W). This transfer task and our global protocol are presented, including the sampling grid, the training and test of Pix2Pix and CycleGAN models, such as the perceptual assessment of the generated outputs. Promising results are discussed, opening research issues for neural map style transfer exploration with GANs. Numéro de notice : A2022-172 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2022.2031554 Date de publication en ligne : 13/02/2022 En ligne : https://doi.org/10.1080/23729333.2022.2031554 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99807
in International journal of cartography > vol 8 n° 1 (March 2022) . - pp 18 - 36[article]