Détail de l'auteur
Auteur Shiping Ge |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Siamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
[article]
Titre : Siamese Adversarial Network for image classification of heavy mineral grains Type de document : Article/Communication Auteurs : Huizhen Hao, Auteur ; Zhiwei Jiang, Auteur ; Shiping Ge, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] microscope électronique
[Termes IGN] minéral
[Termes IGN] polarisation croisée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal siamois
[Termes IGN] séparateur à vaste margeRésumé : (auteur) The identification of heavy mineral grains based on microscopic images can significantly reduce the time and economic cost of the identification. There are several deep learning models to realize end-to-end identification of mineral image recently. However, due to the variety and complexity of mineral images, the existing models are difficult to accurately recognize heavy mineral grains in microscopic images. Here we propose the Siamese Adversarial Network (SAN) for image classification of the heavy mineral grains, which is the first time to focus on addressing the domain difference of heavy mineral images from different basins. In more details, we design a Siamese feature encoder to extract features of both the plane-polarized and cross-polarized images as internal representation of heavy mineral grains. The features are reconstructed to discard domain-related information by adversarial training the heavy mineral classifier and domain discriminator. The identification performance of the models under the three mixed domain experiments is consistently higher than the performance under the same domain settings respectively which shows that the model we proposed achieves a great generalization ability on unseen domains. Numéro de notice : A2022-174 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.105016 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.105016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99810
in Computers & geosciences > vol 159 (February 2022) . - n° 105016[article]