Détail de l'auteur
Auteur Alexander Michels |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An integrated framework of global sensitivity analysis and calibration for spatially explicit agent-based models / Jeon-Young Kang in Transactions in GIS, vol 26 n° 1 (February 2022)
[article]
Titre : An integrated framework of global sensitivity analysis and calibration for spatially explicit agent-based models Type de document : Article/Communication Auteurs : Jeon-Young Kang, Auteur ; Alexander Michels, Auteur ; Andrew Crooks, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 100 - 128 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse de variance
[Termes IGN] épidémie
[Termes IGN] étalonnage de modèle
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] Miami
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] WebSIGRésumé : (auteur) Calibration of agent-based models (ABMs) is a major challenge due to the complex nature of the systems being modeled, the heterogeneous nature of geographical regions, the varying effects of model inputs on the outputs, and computational intensity. Nevertheless, ABMs need to be carefully tuned to achieve the desirable goal of simulating spatiotemporal phenomena of interest, and a well-calibrated model is expected to achieve an improved understanding of the phenomena. To address some of the above challenges, this article proposes an integrated framework of global sensitivity analysis (GSA) and calibration, called GSA-CAL. Specifically, variance-based GSA is applied to identify input parameters with less influence on differences between simulated outputs and observations. By dropping these less influential input parameters in the calibration process, this research reduces the computational intensity of calibration. Since GSA requires many simulation runs, due to ABMs' stochasticity, we leverage the high-performance computing power provided by the advanced cyberinfrastructure. A spatially explicit ABM of influenza transmission is used as the case study to demonstrate the utility of the framework. Leveraging GSA, we were able to exclude less influential parameters in the model calibration process and demonstrate the importance of revising local settings for an epidemic pattern in an outbreak. Numéro de notice : A2022-176 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12837 Date de publication en ligne : 03/09/2021 En ligne : https://doi.org/10.1111/tgis.12837 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99832
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 100 - 128[article]