Détail de l'auteur
Auteur Ruozhen Cheng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations / Ruozhen Cheng in Transactions in GIS, vol 26 n° 1 (February 2022)
[article]
Titre : Quickly locating POIs in large datasets from descriptions based on improved address matching and compact qualitative representations Type de document : Article/Communication Auteurs : Ruozhen Cheng, Auteur ; Jiaxin Liao, Auteur ; Jing Chen, Auteur Année de publication : 2022 Article en page(s) : pp 129 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] information sémantique
[Termes IGN] modèle d'ontologie
[Termes IGN] point d'intérêt
[Termes IGN] raisonnement spatial
[Termes IGN] relation spatiale
[Termes IGN] service fondé sur la position
[Termes IGN] similitude sémantiqueRésumé : (auteur) Locating points of interest (POIs) from descriptions can support intelligent location-based services. Available research achieves it through address matching and spatial reasoning. However, semantic characteristics and spatial proximities of address fields are usually neglected in address matching; current applications of spatial reasoning represent qualitative spatial relations in semantic networks for efficient queries, but they do not yet scale to large datasets for qualitative direction reasoning due to massive qualitative direction relations between objects; moreover, spatial reasoning on various quantitative distances should be optimized. This study proposes a method that improves the accuracy of address matching by combining multiple similarities and enables quick spatial reasoning through the faster relation retrieval of compact qualitative direction representations implemented on global equal latitude and longitude grids (ELLGs) and the ELLG-based quantitative calculations. The proposed method has been verified by two real-world datasets and proven to be efficient and accurate when locating POIs in large POI datasets from descriptions. Numéro de notice : A2022-177 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12838 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1111/tgis.12838 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99834
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 129 - 154[article]