Détail de l'auteur
Auteur Yizhi Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Discovering transition patterns among OpenStreetMap feature classes based on the Louvain method / Yijiang Zhao in Transactions in GIS, vol 26 n° 1 (February 2022)
[article]
Titre : Discovering transition patterns among OpenStreetMap feature classes based on the Louvain method Type de document : Article/Communication Auteurs : Yijiang Zhao, Auteur ; Wentao Yang, Auteur ; Yizhi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 236 - 258 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] Açores, archipel des
[Termes IGN] algorithme glouton
[Termes IGN] données localisées des bénévoles
[Termes IGN] étiquette
[Termes IGN] géobalise
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routierRésumé : (auteur) Numerous studies have shown that OpenStreetMap (OSM) data can achieve high positional quality. However, the thematic attributes of OSM objects can be modified several times, which has a large impact on semantic heterogeneity. Identifying transition patterns within OSM feature classes is an important preliminary step for the tag recommendation algorithm, which can reduce the number of modifications and enhance the efficiency of OSM data updates. In this article, we propose an approach for discovering transition patterns among OSM feature classes. We first produced the transition matrix of feature classes and then developed a graph. Next, the Louvain method for community detection was utilized to cluster the feature classes. OSM data from Indiana, USA, and the Azores, Portugal, were used for our experiments. Some transition patterns were discovered: (1) many feature classes with the most transitions are the same in both datasets and most transitions occur in road-related feature classes; (2) people tend to tag general classes if they are unsure of the specific classes of tagged objects; and (3) most class transitions occurred as a result of volunteers improving the specificity and precision of feature classes. Moreover, consistently confusing concept pairs were identified. Numéro de notice : A2022-178 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12843 Date de publication en ligne : 08/10/2021 En ligne : https://doi.org/10.1111/tgis.12843 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99835
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 236 - 258[article]