Détail de l'auteur
Auteur Qun Sun |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Progressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules / Fubing Zhang in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
[article]
Titre : Progressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules Type de document : Article/Communication Auteurs : Fubing Zhang, Auteur ; Qun Sun, Auteur ; Jingzhen Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 609 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] effondrement (généralisation)
[Termes IGN] représentation multiple
[Termes IGN] rivière
[Termes IGN] segmentation
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Collapse is a common cartographic generalization operation in multi-scale representation and cascade updating of vector spatial data. During transformation from large- to small-scale, the dual-line river shows progressive collapse from narrow river segment to line. The demand for vector spatial data with various scales is increasing; however, research on the progressive collapse of dual-line rivers is lacking. Therefore, we proposed a progressive collapse method based on vector spatial data. First, based on the skeleton graph of the dual-line river, the narrow and normal river segments are preliminarily segmented by calculating the width of the river. Second, combined with the rules of cartographic generalization, the collapse and exaggeration priority strategies are formulated to determine the handling mode of the river segment. Finally, based on the two strategies, progressive collapse of dual-line rivers is realized by collapse and exaggeration of the river segment. Experimental results demonstrated that the progressive collapse results of the proposed method were scale-driven, and the collapse part had no burr and topology problems, whereas the remaining part was clearly visible. The proposed method can be better applied to progressive collapse of the dual-line river through qualitative and quantitative evaluation with another progressive collapse method. Numéro de notice : A2022-901 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120609 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.3390/ijgi11120609 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102285
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 609[article]GA-Net: A geometry prior assisted neural network for road extraction / Xin Chen in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : GA-Net: A geometry prior assisted neural network for road extraction Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Qun Sun, Auteur ; Wenyue Guo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103004 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] données multiéchelles
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] jeu de données
[Termes IGN] Massachusetts (Etats-Unis)Résumé : (auteur) With geospatial intelligence research developing rapidly, automatic road extraction is becoming a fundamental and challenging task. Due to the special geometric structure and spectral information of road networks, existing methods suffer from incomplete and fractured results. In this work, a novel road extraction convolutional neural network, incorporating the road boundary details and road junction information via a dual-branch multi-task structure, is proposed to learn synergistic feature representations and strengthen road connectivity. Firstly, a BiFPN-based feature aggregation module is utilised to bridge the semantic gap between low-level and high-level feature maps, allowing multi-scale spatial details to be fully fused. Secondly, the boundary auxiliary branch, using a U-shaped network with a spatial-channel attention module, captures residential information for the backbone to enhance the subtleties of road edges. Thirdly, the node inferring branch models the road junction position jointly with the road surface, aiming to strengthen the topology structure and reduce the fragmented road segments. We perform experiments on three diverse road datasets, namely the DeepGlobe dataset, Massachusetts dataset, and SpaceNet dataset. The results demonstrate that our model shows an overall performance improvement over some SOTA algorithms and the IoU indicator achieves 3.86%, 0.79%, and 1.71% improvements over Unet on the three datasets, respectively. Numéro de notice : A2022-785 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103004 En ligne : https://doi.org/10.1016/j.jag.2022.103004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101888
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103004[article]Road network generalization method constrained by residential areas / Zheng Lyu in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
[article]
Titre : Road network generalization method constrained by residential areas Type de document : Article/Communication Auteurs : Zheng Lyu, Auteur ; Qun Sun, Auteur ; Jingzhen Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 159 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] 1:50.000
[Termes IGN] carte routière
[Termes IGN] connexité (topologie)
[Termes IGN] corrélation
[Termes IGN] programmation par contraintes
[Termes IGN] quartier
[Termes IGN] réseau routier
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone (aménagement du territoire)
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Residential areas and road networks have a strong geographical correlation. The development of a single geographical feature could destroy the geographical correlation. It is necessary to establish collaborative generalization models suitable for multiple features. However, existing road network generalization methods for mapping purposes do not fully consider residential areas. Compared with road networks, residential areas have a higher priority in cartographic generalization. In this regard, this study proposes a road network generalization method constrained by residential areas. First, the roads and settlements obtained from clustering residential areas were classified. Next, the importance of the settlements was evaluated and certain settlements were selected as the control features. Subsequently, a geographical network with the settlements as the nodes was built, and the traffic paths between adjacent settlements were searched. Finally, redundant paths between the settlements were simplified, and the visual continuity and topological connectivity were checked. The data of a 1:50,000 road network and residential areas were used as the experimental data. The experimental results demonstrated that the proposed method preserves the overall structure and relative density characteristics of the road network, as well as the geographical correlation between the road network and residential areas. Numéro de notice : A2022-184 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11030159 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.3390/ijgi11030159 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99890
in ISPRS International journal of geo-information > vol 11 n° 3 (March 2022) . - n° 159[article]