Détail de l'auteur
Auteur Alexandra Stefanidou |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A national fuel type mapping method improvement using sentinel-2 satellite data / Alexandra Stefanidou in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : A national fuel type mapping method improvement using sentinel-2 satellite data Type de document : Article/Communication Auteurs : Alexandra Stefanidou, Auteur ; Ioannis Z. Gitas, Auteur ; Thomas Katagis, Auteur Année de publication : 2022 Article en page(s) : pp 1022 - 1042 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte de la végétation
[Termes IGN] carte thématique
[Termes IGN] combustible
[Termes IGN] distribution spatiale
[Termes IGN] Grèce
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] prévention des risquesRésumé : (auteur) Despite the fact that wildland fires have always been an integral part of many ecosystems, their increased frequency and intensity have reinforced the need of fire managers for updated and highly accurate information associated with the spatial distribution of forest fuels. In 2015, a fuel type mapping method was developed in the framework of the “National Observatory of Forest Fires (NOFFi)” project resulting in the generation of a national fuel type map. In this study, we aimed at examining the potential of the newly available Sentinel-2 satellite images for the improvement of the NOFFi’s mapping method in terms of accuracy and update effectiveness of the national fuel type map. Results demonstrate Sentinel-2 data will likely improve the resolution and reliability of national fuel type maps, increasing mapping efficiency for operational purposes. Numéro de notice : A2022-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1756460 Date de publication en ligne : 28/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756460 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100687
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1022 - 1042[article]Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data Type de document : Article/Communication Auteurs : Nikos Georgopoulos, Auteur ; Ioannis Z. Gitas, Auteur ; Alexandra Stefanidou, Auteur ; Lauri Korhonen, Auteur ; Dimitris G. Stavrakoudis, Auteur Année de publication : 2021 Article en page(s) : n° 4827 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Abies (genre)
[Termes IGN] biomasse aérienne
[Termes IGN] capteur multibande
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt inéquienne
[Termes IGN] Grèce
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] montagne
[Termes IGN] Pinophyta
[Termes IGN] régression
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (auteur) Stem biomass is a fundamental component of the global carbon cycle that is essential for forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR) has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes. The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured forest with complex topography. Destructive and non-destructive field measurements were collected for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in Greece. Subsequently, two allometric equations were constructed to enrich the reference data with non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB and TSB estimation using height (height percentiles and bicentiles, max and average height) and intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78) and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem biomass estimates, the general applicability of which should be further tested in different biomes and ecosystems. Numéro de notice : A2021-953 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13234827 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/rs13234827 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99955
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4827[article]