Détail de l'auteur
Auteur M.I. Kaniu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Feasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques / J.O. Ondieki in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Feasibility of mapping radioactive minerals in high background radiation areas using remote sensing techniques Type de document : Article/Communication Auteurs : J.O. Ondieki, Auteur ; C.O. Mito, Auteur ; M.I. Kaniu, Auteur Année de publication : 2022 Article en page(s) : n° 102700 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de groupement
[Termes IGN] carte thématique
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données géologiques
[Termes IGN] image Landsat-OLI
[Termes IGN] Kappa de Cohen
[Termes IGN] Kenya
[Termes IGN] minerai
[Termes IGN] pollution radioactive
[Termes IGN] précision de la classification
[Termes IGN] radioactivité
[Termes IGN] signature spectraleRésumé : (auteur) This study investigates the utility of using remote sensing and geographic information system techniques to accurately infer the presence of radioactive minerals in a typical high background radiation area (HBRA) by analyzing spectral signatures of associated soil, rocks and vegetation. To accomplish this, both unsupervised (K-Means Clustering) and supervised classification techniques based on a maximum likelihood classifier (MLC) were applied to Landsat-8 Imager data from Mrima Hill on Kenya's south coast. The hill is surrounded by dense tropical forest and deeply weathered soils which are rich in Nb, Th, and rare earth elements. Due to high activity concentrations of 232Th (>8 times higher than the world average value for soil), the hill has been designated as a geogenic HBRA. Based on the underlying geological formations, four classifications of vegetation and two classifications of soil/rocks were established and used to indicate the presence of radioactive minerals in the area. Measurements of air-absorbed gamma dose-rates in the area were successfully used to validate these findings. The application of the MLC method on Landsat satellite data shows that this method can be used as a powerful tool to explore and improve radioactive minerals mapping in HBRAs, the overall classification accuracy of Landsat8 OLI data using botanical technique is 80% and the Kappa Coefficient is 0.6. The overall classification accuracy using soil/rocks spectral signatures is 91% and the Kappa Coefficient is 0.7. Finally, the study demonstrated the general utility of remote sensing techniques in radioactive mineral surveys as well as environmental radiological assessments, particularly in resource-constrained settings. Numéro de notice : A2022-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102700 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102700 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99956
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102700[article]