Détail de l'auteur
Auteur Camille Lhenry |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Détection d’ouvertures par segmentation sémantique de nuages de points 3D : apport de l’apprentissage profond / Camille Lhenry (2021)
Titre : Détection d’ouvertures par segmentation sémantique de nuages de points 3D : apport de l’apprentissage profond Type de document : Mémoire Auteurs : Camille Lhenry, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2021 Importance : 106 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] base de données dérivée
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fenêtre (bâtiment)
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] Python (langage de programmation)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) Grâce au développement rapide des techniques d’acquisition 3D, les nuages de points sont de plus en plus utilisés dans divers domaines. Ils sont notamment la donnée de départ pour le développement de BIM (Building Information Modeling) de bâtiments existants, processus permettant le travail collaboratif des différents corps de métier. Néanmoins, le traitement de cette donnée est une étape majoritairement manuelle, longue et chronophage. Ce projet de fin d’études s’inscrit donc dans une problématique d’automatisation des traitements menant du nuage de points au BIM et se concentre sur la segmentation automatique des ouvertures des bâtiments. Cette problématique a été abordée par de multiples auteurs avec des méthodes algorithmiques ou d’apprentissage machine, qui nécessitent une certaine implication de l’utilisateur. Profitant de l’expansion du domaine de l’apprentissage profond, le réseau de neurones PointNet++ (Qi, Yi, Su & Guibas 2017) a été utilisé pour répondre à l’objectif de l’étude. Malgré les difficultés inhérentes à la nature des éléments à segmenter (transparence des matériaux, variabilité des styles architecturaux), la qualité de segmentation des ouvertures est prometteuse, notamment en couplant l’information thermique au nuage de points. Le défi majeur mis en évidence par l’étude est le manque de bases de données d’apprentissage, indispensables à l’utilisation de réseaux de neurones. Face à cet obstacle, une solution semi-automatique nécessitant la labellisation manuelle d’une portion limitée du bâtiment est présentée. Note de contenu : Introduction
1- Etat de l'art
2- Développement de la méthode
3- Résultats et discussions
Conclusions et perspectivesNuméro de notice : 28682 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Mémoire ingénieur INSAS Organisme de stage : Laboratoire ICUBE En ligne : http://eprints2.insa-strasbourg.fr/4492/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99976