Détail de l'auteur
Auteur Parviz Fatehi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-sensor aboveground biomass estimation in the broadleaved hyrcanian forest of Iran / Ghasem Ronoud in Canadian journal of remote sensing, vol 47 n° 6 ([01/11/2021])
[article]
Titre : Multi-sensor aboveground biomass estimation in the broadleaved hyrcanian forest of Iran Titre original : Estimation multi-capteurs de la biomasse aérienne de la forêt de feuillus hyrcanienne d’Iran Type de document : Article/Communication Auteurs : Ghasem Ronoud, Auteur ; Parviz Fatehi, Auteur ; Ali Asghar Darvishsefat, Auteur Année de publication : 2021 Article en page(s) : pp 818 - 834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse aérienne
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] estimation statistique
[Termes IGN] Fagus orientalis
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Iran
[Termes IGN] régression multiple
[Vedettes matières IGN] Inventaire forestierMots-clés libres : Support Vector Regression Résumé : (auteur) In this study, the capability of Landsat-8 (L8), Sentinel-2 (S2), Sentinel-1 (S1), and their combination was investigated for estimating aboveground biomass (AGB). A pure stand of Fagus Orientalis located in the Hyrcanian forest of Iran was selected as the study area. The performance of a parametric approach, i.e., Multiple Linear Regression (MLR) model and non-parametric approaches, i.e., k-Nearest Neighbor (k-NN), Random Forest (RF), and Support Vector Regression (SVR), were also evaluated for AGB estimations. Our results indicated that among S2 metrics, the FAPAR canopy biophysical index and NDVI index based on the red-edge band (NIR-b8a) have the highest correlation coefficient (r) of 0.420 and 0.417, respectively. The results of AGB estimation showed that a combination of S2 and S1 datasets using the k-NN algorithm had the best accuracy (R2 of 0.57 and rRMSE of 14.68%). The best rRMSE using L8, S2, and S1 datasets was 18.95, 16.99, and 19.17% using k-NN, k-NN, and MLR algorithms, respectively. The combination of L8 with S1 dataset also improved the rRMSE relative to L8 and S1 separately by 0.96 and 1.18%, respectively. We concluded that the combination of optical data (L8 or S2) with SAR data (S1) improves the broadleaved Hyrcanian AGB estimation. Numéro de notice : A2021-956 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article DOI : 10.1080/07038992.2021.1968811 Date de publication en ligne : 07/09/2021 En ligne : https://doi.org/10.1080/07038992.2021.1968811 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99982
in Canadian journal of remote sensing > vol 47 n° 6 [01/11/2021] . - pp 818 - 834[article]