Détail de l'auteur
Auteur Lars Wilko Sommer |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Deep learning based vehicle detection in aerial imagery Type de document : Monographie Auteurs : Lars Wilko Sommer, Éditeur scientifique Editeur : Karlsruhe [Allemagne] : KIT Scientific Publishing Année de publication : 2022 Importance : 276 p. Format : 15 x 21 cm ISBN/ISSN/EAN : 978-3-7315-1113-7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ancre
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre
[Termes IGN] image aérienne
[Termes IGN] véhiculeRésumé : (éditeur) This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced. Note de contenu : 1- Introduction
2- Related work
3- Concept
4- Experimental setup
5- Base framework
6- Integration of contextual knowledge
7- Runtime optimization
8- Evaluation
9- Conclusions and outlookNuméro de notice : 28685 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5445/KSP/1000135415 En ligne : https://doi.org/10.5445/KSP/1000135415 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100015