Détail de l'auteur
Auteur Ji Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry / Yufeng Hu in Journal of geodesy, vol 96 n° 8 (August 2022)
[article]
Titre : Ground surface elevation changes over permafrost areas revealed by multiple GNSS interferometric reflectometry Type de document : Article/Communication Auteurs : Yufeng Hu, Auteur ; Ji Wang, Auteur ; Zhenhong Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 56 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse diachronique
[Termes IGN] dégel
[Termes IGN] données Galileo
[Termes IGN] données GLONASS
[Termes IGN] pergélisol
[Termes IGN] rapport signal sur bruit
[Termes IGN] réflecteur
[Termes IGN] réflectométrie par GNSS
[Termes IGN] signal GNSS
[Termes IGN] surface du sol
[Termes IGN] variation saisonnièreRésumé : (auteur) Ground subsidence and uplift caused by the annual thawing and freezing of the active layer are important variables in permafrost studies. Global positioning system interferometric reflectometry (GPS-IR) has been successfully applied to retrieve the continuous ground surface movements in permafrost areas. However, only GPS signals were used in previous studies. In this study, using multiple global navigation satellite system (GNSS) signal-to-noise ratio (SNR) observations recorded by a GNSS station SG27 in Utqiaġvik, Alaska during the period from 2018 to 2021, we applied multiple GNSS-IR (multi-GNSS-IR) technique to the SNR data and obtained the complete and continuous ground surface elevation changes over the permafrost area at a daily interval in snow-free seasons in 2018 and 2019. The GLONASS-IR and Galileo-IR measurements agreed with the GPS-IR measurements at L1 frequency, which are the most consistent measurements among all multi-GNSS measurements, in terms of the overall subsidence trend but clearly showed periodic noises. We proposed a method to reconstruct the GLONASS- and Galileo-IR elevation changes by specifically grouping and fitting them with a composite model. Compared with GPS L1 results, the unbiased root mean square error (RMSE) of the reconstructed Galileo measurements reduced by 50.0% and 42.2% in 2018 and 2019, respectively, while the unbiased RMSE of the reconstructed GLONASS measurements decreased by 41.8% and 25.8% in 2018 and 2019, respectively. Fitting the composite model to the combined multi-GNSS-IR, we obtained seasonal displacements of − 3.27 ± 0.13 cm (R2 = 0.763) and − 10.56 ± 0.10 cm (R2 = 0.912) in 2018 and 2019, respectively. Moreover, we found that the abnormal summer heave was strongly correlated with rain events, implying hydrological effects on the ground surface elevation changes. Our study shows the feasibility of multi-GNSS-IR in permafrost areas for the first time. Multi-GNSS-IR opens up a great opportunity for us to investigate ground surface movements over permafrost areas with multi-source observations, which are important for our robust analysis and quantitative understanding of frozen ground dynamics under climate change. Numéro de notice : A2022-606 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01646-5 Date de publication en ligne : 13/08/2022 En ligne : https://doi.org/10.1007/s00190-022-01646-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101385
in Journal of geodesy > vol 96 n° 8 (August 2022) . - n° 56[article]A robust nonrigid point set registration framework based on global and intrinsic topological constraints / Guiqiang Yang in The Visual Computer, vol 38 n° 2 (February 2022)
[article]
Titre : A robust nonrigid point set registration framework based on global and intrinsic topological constraints Type de document : Article/Communication Auteurs : Guiqiang Yang, Auteur ; Rui Li, Auteur ; Yujun Liu, Auteur ; Ji Wang, Auteur Année de publication : 2022 Article en page(s) : pp 603 - 623 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] contrainte géométrique
[Termes IGN] contrainte topologique
[Termes IGN] descripteur local
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] méthode robuste
[Termes IGN] processus gaussien
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) The problem of registering nonrigid point sets, with the aim of estimating the correspondences and learning the transformation between two given sets of points, often arises in computer vision tasks. This paper proposes a novel method for performing nonrigid point set registration on data with various types of degradation, in which the registration problem is formulated as a Gaussian mixture model (GMM)-based density estimation problem. Specifically, two complementary constraints are jointly considered for optimization in a GMM probabilistic framework. The first is a thin-plate spline-based regularization constraint that maintains global spatial motion consistency, and the second is a spectral graph-based regularization constraint that preserves the intrinsic structure of a point set. Moreover, the correspondences and the transformation are alternately optimized using the expectation maximization algorithm to obtain a closed-form solution. We first utilize local descriptors to construct the initial correspondences and then estimate the underlying transformation under the GMM-based framework. Experimental results on contour images and real images show the effectiveness and robustness of the proposed method. Numéro de notice : A2022-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-020-02037-7 Date de publication en ligne : 21/02/2022 En ligne : https://doi.org/10.1007/s00371-020-02037-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100040
in The Visual Computer > vol 38 n° 2 (February 2022) . - pp 603 - 623[article]