Détail de l'auteur
Auteur Kan Chen |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A GAN-based approach toward architectural line drawing colorization prototyping / Qian (Chayn) Sun in The Visual Computer, vol 38 n° 4 (April 2022)
[article]
Titre : A GAN-based approach toward architectural line drawing colorization prototyping Type de document : Article/Communication Auteurs : Qian (Chayn) Sun, Auteur ; Yan Chen, Auteur ; Wenyuan Tao, Auteur ; Han Jiang, Auteur ; Mu Zhang, Auteur ; Kan Chen, Auteur ; Marius Erdt, Auteur Année de publication : 2022 Article en page(s) : pp 1283 - 1300 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] architecture
[Termes IGN] bâtiment
[Termes IGN] couleur (variable spectrale)
[Termes IGN] prototype
[Termes IGN] réseau antagoniste génératif
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Line drawing with colorization is a popular art format and tool for architectural illustration. The goal of this research is toward generating a high-quality and natural-looking colorization based on an architectural line drawing. This paper presents a new Generative Adversarial Network (GAN)-based method, named ArchGANs, including ArchColGAN and ArchShdGAN. ArchColGAN is a GAN-based line-feature-aware network for stylized colorization generation. ArchShdGAN is a lighting effects generation network, from which the building depiction in 3D can benefit. In particular, ArchColGAN is able to maintain the important line features and the correlation property of building parts as well as reduce the uneven colorization caused by sparse lines. Moreover, we proposed a color enhancement method to further improve ArchColGAN. Besides the single line drawing images, we also extend our method to handle line drawing image sequences and achieve rotation animation. Experiments and studies demonstrate the effectiveness and usefulness of our proposed method for colorization prototyping. Numéro de notice : A2022-154 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s00371-021-02219-x Date de publication en ligne : 23/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02219-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100292
in The Visual Computer > vol 38 n° 4 (April 2022) . - pp 1283 - 1300[article]High-performance adaptive texture streaming and rendering of large 3D cities / Alex Zhang in The Visual Computer, vol 38 n° 4 (April 2022)
[article]
Titre : High-performance adaptive texture streaming and rendering of large 3D cities Type de document : Article/Communication Auteurs : Alex Zhang, Auteur ; Kan Chen, Auteur ; Henry Johan, Auteur ; Marius Erdt, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] couleur à l'écran
[Termes IGN] flux continu
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] rendu (géovisualisation)
[Termes IGN] texturage
[Termes IGN] villeRésumé : (auteur) We propose a high-performance texture streaming system for real-time rendering of large 3D cities with millions of textures. Our main contribution is a texture streaming system that automatically adjusts the streaming workload at runtime based on measured frame latencies, specifically addressing the high memory binding costs of hardware virtual texturing which causes frame rate stuttering. Our system streams textures in parallel with prioritization based on GPU computed mesh perceptibility, and these textures are cached in a sparse partially resident image at runtime without the need for a texture preprocessing step. In addition, we improve rendering quality by minimizing texture pop-in artifacts using a color blending scheme based on mipmap levels. We evaluate our texture streaming system using three structurally distinct datasets with many textures and compared it to a baseline, a game engine, and our prior method. Results show an 8X improvement in rendering performance and 7X improvement in rendering quality compared to the baseline. Numéro de notice : A2022-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-021-02152-z Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02152-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100043
in The Visual Computer > vol 38 n° 4 (April 2022)[article]