Détail de l'auteur
Auteur Lu Xu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]