Détail de l'auteur
Auteur Shenghui Fang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data Type de document : Article/Communication Auteurs : Yanyan Wang, Auteur ; Shenghui Fang, Auteur ; Lingli Zhao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102720 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] carte de la végétation
[Termes IGN] Chine
[Termes IGN] croissance végétale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] maïs (céréale)
[Termes IGN] mesure de similitude
[Termes IGN] phénologie
[Termes IGN] saison
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) This study aims to map the planting area of summer maize and estimate the spatiotemporal phenology information with parcel-based classification method through integration of Sentinel-1/2 data in Jiaozuo located in North China Plain. For the maize mapping, the combination of Sentinel-1/2 data with the parcel-based method has the highest classification accuracy, suggesting that the integration of Sentinel-1/2 data with parcel-based method has great potential for regional maize mapping. For the estimation of maize phenology, the dynamic threshold method is used to extract the tasseling and milk ripening date through the time series σ0VH. In order to reduce the influence of precipitation or irrigation on SAR data, a Local Minimum Value Composite (LMVC) method is proposed to filter the original time series SAR data. The systematic phenology estimation method mainly includes LMVC, S-G filtering, Fourier curve fitting and dynamic threshold points extracting. Compared with the actual phenology date by field investigation, the errors of estimated tasseling and milk ripening date are 4.3 days and 5.5 days respectively, indicating that the time series σ0VH derived from the SAR data has great potential in spatiotemporal phenology estimation of field maize. Finally, the scattering mechanism of the maize field to C-band microwave in different growth periods was analyzed. It was also found that the phenology of maize was delayed in the coal mining subsidence areas and the areas with insufficient field management. Numéro de notice : A2022-232 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102720 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102720 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100121
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102720[article]