Détail de l'auteur
Auteur Tongtong Sun |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A graph attention network for road marking classification from mobile LiDAR point clouds Type de document : Article/Communication Auteurs : Lina Fang, Auteur ; Tongtong Sun, Auteur ; Shuang Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] noeud
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines. Numéro de notice : A2022-234 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.jag.2022.102735 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102735 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100124
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102735[article]