Détail de l'auteur
Auteur Michael Kölle |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds / Michael Kölle in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds Type de document : Article/Communication Auteurs : Michael Kölle, Auteur ; Volker Walter, Auteur ; Uwe Soergel, Auteur Année de publication : 2022 Article en page(s) : pp 259 - 266 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] orthoimage couleur
[Termes IGN] production participative
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] traitement de données localiséesRésumé : (auteur) The main bottleneck of machine learning systems, such as convolutional neural networks, is the availability of labeled training data. Hence, much effort (and thus cost) is caused by setting up proper training data sets. However, models trained on specific data sets often perform unsatisfactorily when used to derive predictions for another (yet related) data set. We aim to overcome this problem by employing active learning to iteratively adapt an existing classifier to another domain. Precisely, we are concerned with semantic segmentation of 3D point clouds of multiple epochs. We first establish a Random Forest classifier for the first epoch of our data set and adapt it for successful prediction to two more temporally disjoint point clouds of the same but extended area. The point clouds, which are part of the newly introduced Hessigheim 3D benchmark data set, incorporate different characteristics with respect to the acquisition date and sensor configuration. We demonstrate that our workflow for domain adaptation is designed in such a way that it i) offers the possibility to greatly reduce labeling effort compared to a passive learning baseline or to an active learning baseline trained from scratch, if the domain gap is small enough and ii) at least does not cause more expenses (compared to a newly initialized active learning loop), if the domain gap is severe. The latter is especially beneficial in scenarios where the similarity of two different domains is hard to assess. Numéro de notice : A2022-435 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-259-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-259-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100743
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 259 - 266[article]Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
[article]
Titre : Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy Type de document : Article/Communication Auteurs : Norbert Haala, Auteur ; Michael Kölle, Auteur ; Michael Cramer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100014 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation automatisée
[Termes IGN] appariement d'images
[Termes IGN] collecte de données
[Termes IGN] compensation par faisceaux
[Termes IGN] données lidar
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] orthoimage
[Termes IGN] précision millimétrique
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) During the last two decades, UAV emerged as standard platform for photogrammetric data collection. Main motivation in that early phase was the cost effective airborne image collection at areas of limited size. This was already feasible by rather simple payloads like an off-the-shelf, compact camera and a navigation-grade GNSS sensor. Meanwhile, dedicated sensor systems enable applications that have not been feasible in the past. One example is the airborne collection of dense 3D point clouds at millimetre accuracies, which will be discussed in our paper. For this purpose, we collect both LiDAR and image data from a joint UAV platform and apply a so-called hybrid georeferencing. This process integrates photogrammetric bundle block adjustment with direct georeferencing of LiDAR point clouds. By these means georeferencing accuracy is improved for the LiDAR point cloud by an order of magnitude. We demonstrate the feasibility of our approach in the context of a project, which aims on monitoring of subsidence of about 10 mm/year. The respective area of interest is defined by a ship lock and its vicinity of mixed use. In that area, multiple UAV flights were captured and evaluated for a period of three years. As our main contribution, we demonstrate that 3D point accuracies at sub-centimetre level can be achieved. This is realized by joint orientation of laser scans and images in a hybrid adjustment framework, which enables accuracies corresponding to the GSD of the captured imagery. Numéro de notice : A2022-236 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100014Get rights and content Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100014Get rights and content Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100146
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100014[article]