Détail de l'auteur
Auteur Yue Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)
[article]
Titre : Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis Type de document : Article/Communication Auteurs : Kai Zhang, Auteur ; Zhen Qian, Auteur ; Yue Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103598 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage profond
[Termes IGN] cartographie du bruit
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution spatiale
[Termes IGN] image Streetview
[Termes IGN] lutte contre le bruit
[Termes IGN] milieu urbain
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] pollution acoustique
[Termes IGN] trafic routier
[Termes IGN] ville durableRésumé : (auteur) Road noise barriers (RNBs) are important urban infrastructures to relieve the harm of traffic noise pollution for citizens. Therefore, obtaining the spatial distribution characteristics of RNBs, such as precise positions and mileage, can be of great help for obtaining more accurate urban noise maps and assessing the quality of the urban living environment for sustainable urban development. However, an effective and efficient method for identifying RNBs and acquiring their attributes in large areas is scarce. This study constructs an ensemble classification model (ECM) to automatically identify RNBs at the city level based on Baidu Street View (BSV). Firstly, the bootstrap sampling method is proposed to build a street view image-based train set, where the effect of imbalanced categories of samples was reduced by adding confusing negative samples. Secondly, two state-of-the-art deep learning models, ResNet and DenseNet, are ensembled to construct an ECM based on the bagging framework. Finally, a post-processing method has been proposed based on geospatial analysis to eliminate street view images (SVIs) that are misclassified as RNBs. This study takes Suzhou, China as the study area to validate the proposed method. The model achieved an accuracy and F1-score of 0.98 and 0.90, respectively. The total mileage of the RNBs in Suzhou was 178,919 m. The results demonstrated the performance of the proposed RNBs identification framework. The significance of obtaining RNBs attributes for accelerating sustainable urban development has been demonstrated through the case of photovoltaic noise barriers (PVNBs). Numéro de notice : A2022-241 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.scs.2021.103598 Date de publication en ligne : 20/12/2021 En ligne : https://doi.org/10.1016/j.scs.2021.103598 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100167
in Sustainable Cities and Society > vol 78 (March 2022) . - n° 103598[article]