Détail de l'auteur
Auteur Kenneth Olofsson |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
[article]
Titre : Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads Type de document : Article/Communication Auteurs : Raul de Paula Pires, Auteur ; Kenneth Olofsson, Auteur ; Henrik J. Persson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 211 - 224 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] collecte de données
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] route
[Termes IGN] semis de points
[Termes IGN] Suède
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) The collection of field-reference data is a key task in remote sensing-based forest inventories. However, traditional methods of collection demand extensive personnel resources. Thus, field-reference data collection would benefit from more automated methods. In this study, we proposed a method for individual tree detection (ITD) and stem attribute estimation based on a car-mounted mobile laser scanner (MLS) operating along forest roads. We assessed its performance in six ranges with increasing mean distance from the roadside. We used a Riegl VUX-1LR sensor operating with high repetition rate, thus providing detailed cross sections of the stems. The algorithm we propose was designed for this sensor configuration, identifying the cross sections (or arcs) in the point cloud and aggregating those into single trees. Furthermore, we estimated diameter at breast height (DBH), stem profiles, and stem volume for each detected tree. The accuracy of ITD, DBH, and stem volume estimates varied with the trees’ distance from the road. In general, the proximity to the sensor of branches 0–10 m from the road caused commission errors in ITD and over estimation of stem attributes in this zone. At 50–60 m from roadside, stems were often occluded by branches, causing omissions and underestimation of stem attributes in this area. ITD’s precision and sensitivity varied from 82.8% to 100% and 62.7% to 96.7%, respectively. The RMSE of DBH estimates ranged from 1.81 cm (6.38%) to 4.84 cm (16.9%). Stem volume estimates had RMSEs ranging from 0.0800 m3 (10.1%) to 0.190 m3 (25.7%), depending on the distance to the sensor. The average proportion of detected reference volume was highly affected by the performance of ITD in the different zones. This proportion was highest from 0 to 10 m (113%), a zone that concentrated most ITD commission errors, and lowest from 50 to 60 m (66.6%), mostly due to the omission errors in this area. In the other zones, the RMSE ranged from 87.5% to 98.5%. These accuracies are in line with those obtained by other state-of-the-art MLS and terrestrial laser scanner (TLS) methods. The car-mounted MLS system used has the potential to collect data efficiently in large-scale inventories, being able to scan approximately 80 ha of forests per day depending on the survey setup. This data collection method could be used to increase the amount of field-reference data available in remote sensing-based forest inventories, improve models for area-based estimations, and support precision forestry development. Numéro de notice : A2022-229 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.004 Date de publication en ligne : 18/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100215
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 211 - 224[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Two-phase forest inventory using very-high-resolution laser scanning / Henrik J. Persson in Remote sensing of environment, vol 271 (March- 2 2022)
[article]
Titre : Two-phase forest inventory using very-high-resolution laser scanning Type de document : Article/Communication Auteurs : Henrik J. Persson, Auteur ; Kenneth Olofsson, Auteur ; Johan Holmgren, Auteur Année de publication : 2022 Article en page(s) : n° 112909 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] échantillonnage
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] inférence statistique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement forestier
[Termes IGN] Suède
[Termes IGN] télémétrie laser terrestre
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) In this study, we compared a two-phase laser-scanning-based forest inventory of stands versus a traditional field inventory using sample plots. The two approaches were used to estimate stem volume (VOL), Lorey's mean height (HL), Lorey's stem diameter (DL), and VOL per tree species in a study area in Sweden. The estimates were compared at the stand level with the harvested reference values obtained using a forest harvester. In the first phase, a helicopter acquired airborne laser scanning (ALS) data with >500 points/m2 along 50-m wide strips across the stands. These strips intersected systematic plots in phase two, where terrestrial laser scanning (TLS) was used to model DL for individual trees. In total, phase two included 99 plots across 10 boreal forest stands in Sweden (lat 62.9° N, long 16.9° E). The single trees were segmented in both the ALS and TLS data and linked to each other. The very-high-resolution ALS data enabled us to directly measure tree heights and also classify tree species using a convolutional neural network. Stem volume was predicted from the predicted DBH and the estimated height, using national models, and aggregated at the stand level. The study demonstrates a workflow to derive forest variables and stand-level statistics that has potential to replace many manual field inventories thanks to its time efficiency and improved accuracy. To evaluate the inventories, we estimated bias, RMSE, and precision, expressed as standard error. The laser-scanning-based inventory provided estimates with an accuracy considerably higher than the field inventory. The RMSE was 17 m3/ha (7.24%), 0.9 m (5.63%), and 16 mm (5.99%) for VOL, HL, and DL respectively. The tree species classification was generally successful and improved the three species-specific VOL estimates by 9% to 74%, compared to field estimates. In conclusion, the demonstrated laser-scanning-based inventory shows potential to replace some future forest inventories, thanks to the increased accuracy demonstrated empirically in the Swedish forest study area. Numéro de notice : A2022-249 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112909 Date de publication en ligne : 22/01/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112909 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100201
in Remote sensing of environment > vol 271 (March- 2 2022) . - n° 112909[article]