Détail de l'auteur
Auteur Jiben Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Traffic sign three-dimensional reconstruction based on point clouds and panoramic images / Minye Wang in Photogrammetric record, vol 37 n° 177 (March 2022)
[article]
Titre : Traffic sign three-dimensional reconstruction based on point clouds and panoramic images Type de document : Article/Communication Auteurs : Minye Wang, Auteur ; Rufei Liu, Auteur ; Jiben Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 87 - 110 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] correction d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] lidar mobile
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) Traffic signs are a very important source of information for drivers and pilotless automobiles. With the advance of Mobile LiDAR System (MLS), massive point clouds have been applied in three-dimensional digital city modelling. However, traffic signs in MLS point clouds are low density, colourless and incomplete. This paper presents a new method for the reconstruction of vertical rectangle traffic sign point clouds based on panoramic images. In this method, traffic sign point clouds are extracted based on arc feature and spatial semantic features analysis. Traffic signs in images are detected by colour and shape features and a convolutional neural network. Traffic sign point cloud and images are registered based on outline features. Finally, traffic sign points match traffic sign pixels to reconstruct the traffic sign point cloud. Experimental results have demonstrated that this proposed method can effectively obtain colourful and complete traffic sign point clouds with high resolution. Numéro de notice : A2022-254 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12398 Date de publication en ligne : 05/03/2022 En ligne : https://doi.org/10.1111/phor.12398 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100217
in Photogrammetric record > vol 37 n° 177 (March 2022) . - pp 87 - 110[article]