Détail de l'auteur
Auteur Jin Biao Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A knowledge representation model based on the geographic spatiotemporal process / Kun Zheng in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
[article]
Titre : A knowledge representation model based on the geographic spatiotemporal process Type de document : Article/Communication Auteurs : Kun Zheng, Auteur ; Ming Hui Xie, Auteur ; Jin Biao Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 674 - 691 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] approche hiérarchique
[Termes IGN] ontologie
[Termes IGN] raisonnement spatiotemporel
[Termes IGN] représentation des connaissances
[Termes IGN] représentation du changement
[Termes IGN] représentation géographique
[Termes IGN] réseau sémantiqueRésumé : (auteur) Knowledge graphs (KGs) represent entities and relations as computable networks, which is of great value for discovering hidden knowledge and patterns. Geographic KGs mainly describe static facts and have difficulty representing changes, greatly limiting their application in geographic spatiotemporal processes. By analyzing the spatiotemporal features and evolution of geographic elements, this study presents the geographic evolutionary knowledge graph (GEKG). Its representation model has five core elements: time, geographic event (geo-event), geographic entity (geo-entity), activity and property, and defines six relations: logical, semantic, evolutionary and temporal relation, participation and inclusion. It establishes a hierarchical cubical model structure and each temporal layer extends vertically and horizontally starting with the earliest geo-event. Vertical expansion refers to the connection between different kinds of element, such as the participation relation between geo-entities and geo-events. Horizontal expansion indicates the association between the same kinds of element, such as the semantic relation between geo-entities. For different layers, the spatiotemporal differences of elements produce the evolutionary relation. Finally, the comparison of GEKG with Yet Another Great Ontology (YAGO) and Geographic Knowledge Graph (GeoKG) shows that GEKG has more advantages in representing geographic evolutionary knowledge, revealing the evolution mechanism of geographic elements and the evolutionary reasons. Numéro de notice : A2022-255 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1962527 Date de publication en ligne : 05/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1962527 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100228
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 674 - 691[article]