Détail de l'auteur
Auteur Xiangfeng Meng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
[article]
Titre : Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images Type de document : Article/Communication Auteurs : Lingdong Mao, Auteur ; Zhe Zheng, Auteur ; Xiangfeng Meng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] détection d'objet
[Termes IGN] grande échelle
[Termes IGN] identification automatique
[Termes IGN] image à haute résolution
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Urban vacant land is a growing issue worldwide. However, most of the existing research on urban vacant land has focused on small-scale city areas, while few studies have focused on large-scale national areas. Large-scale identification of urban vacant land is hindered by the disadvantage of high cost and high variability when using the conventional manual identification method. Criteria inconsistency in cross-domain identification is also a major challenge. To address these problems, we propose a large-scale automatic identification framework of urban vacant land based on semantic segmentation of high-resolution remote sensing images and select 36 major cities in China as study areas. The framework utilizes deep learning techniques to realize automatic identification and introduces the city stratification method to address the challenge of identification criteria inconsistency. The results of the case study on 36 major Chinese cities indicate two major conclusions. First, the proposed framework of vacant land identification can achieve over 90 percent accuracy of the level of professional auditors with much higher result stability and approximately 15 times higher efficiency compared to the manual identification method. Second, the framework has strong robustness and can maintain high performance in various cities. With the above advantages, the proposed framework provides a practical approach to large-scale vacant land identification in various countries and regions worldwide, which is of great significance for the academic development of urban vacant land and future urban development. Numéro de notice : A2022-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.landurbplan.2022.104384 Date de publication en ligne : 03/03/2022 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104384 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100275
in Landscape and Urban Planning > vol 222 (June 2022) . - n° 104384[article]