Détail de l'auteur
Auteur Youyue Wen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Developing a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)
[article]
Titre : Developing a data-fusing method for mapping fine-scale urban three-dimensional building structure Type de document : Article/Communication Auteurs : Xinxin Wu, Auteur ; Jinpei Ou, Auteur ; Youyue Wen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103716 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie urbaine
[Termes IGN] données localisées 3D
[Termes IGN] données multisources
[Termes IGN] fusion de données
[Termes IGN] hauteur du bâti
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle de régression
[Termes IGN] morphologie urbaine
[Termes IGN] Shenzhen
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) Understanding urban morphology is essential for various urban management studies and local environmental issues and guiding sustainable city development. Existing studies mainly focus on analyzing urban morphology from the horizontal aspect, while the urban vertical structure has rarely been discussed due to the scarcity of reliable and fine-scale urban three-dimensional (3-D) building data. This study develops an effective data-fusing methodology to estimate the heights of individual buildings at a city scale. We examined a machine-learning regression model by collecting public materials, including multi-source remote sensing-(RS)-based products, building-derived features, and relevant data to verify its performance in building height estimation. By applying the model in Shenzhen City, a dense city in the Guangdong-Hong Kong-Macao Greater Bay Area, results demonstrated that integrating rich multi-source explanatory variables could achieve high-accuracy building height retrieval. Using multiple building morphological metrics derived by building height data as proxy measures, the urban 3-D form patterns were further analyzed to understand current heterogeneous urban morphological structures. The proposed methodology can be conveniently applied to worldwide cities for urban 3-D morphology retrieval. Also, the available building height information is useful for planners to design morphological control for cities and thus contributes to sustainable and smart city development. Numéro de notice : A2022-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.103716 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103716 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100279
in Sustainable Cities and Society > vol 80 (May 2022) . - n° 103716[article]