Détail de l'auteur
Auteur Shu Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
[article]
Titre : ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Shu Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] échantillonnage de données
[Termes IGN] OpenStreetMap
[Termes IGN] reconnaissance automatique
[Termes IGN] répertoire toponymique
[Termes IGN] site wiki
[Termes IGN] toponymeRésumé : (auteur) Toponym recognition is used to extract toponyms from natural language texts, which is a fundamental task of ubiquitous geographic information applications. Existing toponym recognition methods with state-of-the-art performance mainly leverage supervised learning (i.e., deep-learning-based approaches) with parameters learned from massive, labeled datasets that must be annotated manually. This is a great inconvenience when model training needs to fit different domain texts, especially those of social media messaging. To address this issue, this article proposes a weakly supervised Chinese toponym recognition (ChineseTR) architecture that leverages a training dataset creator that generates training datasets automatically based on word collections and associated word frequencies from various texts and an extension recognizer that employs a basic bidirectional recurrent neural network based on particular features designed for toponym recognition. The results show that the proposed ChineseTR achieves a 0.76 F1 score in a corpus with a 0.718 out-of-vocabulary rate and a 0.903 in-vocabulary rate. All comparative experiments demonstrate that ChineseTR is an effective and scalable architecture that recognizes toponyms. Numéro de notice : A2022-462 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12902 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1111/tgis.12902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100796
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1256 - 1279[article]Geographic Knowledge Graph (GeoKG): A formalized geographic knowledge representation / Shu Wang in ISPRS International journal of geo-information, vol 8 n° 4 (April 2019)
[article]
Titre : Geographic Knowledge Graph (GeoKG): A formalized geographic knowledge representation Type de document : Article/Communication Auteurs : Shu Wang, Auteur ; Xueying Zhang, Auteur ; Peng Ye, Auteur ; Mi Du, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : n° 184 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Langages informatiques
[Termes IGN] formalisation
[Termes IGN] langage de programmation
[Termes IGN] Nankin (Kiangsou)
[Termes IGN] représentation des connaissances
[Termes IGN] réseau sémantiqueRésumé : (auteur) Formalized knowledge representation is the foundation of Big Data computing, mining and visualization. Current knowledge representations regard information as items linked to relevant objects or concepts by tree or graph structures. However, geographic knowledge differs from general knowledge, which is more focused on temporal, spatial, and changing knowledge. Thus, discrete knowledge items are difficult to represent geographic states, evolutions, and mechanisms, e.g., the processes of a storm “{9:30-60 mm-precipitation}-{12:00-80 mm-precipitation}-…”. The underlying problem is the constructors of the logic foundation (ALC description language) of current geographic knowledge representations, which cannot provide these descriptions. To address this issue, this study designed a formalized geographic knowledge representation called GeoKG and supplemented the constructors of the ALC description language. Then, an evolution case of administrative divisions of Nanjing was represented with the GeoKG. In order to evaluate the capabilities of our formalized model, two knowledge graphs were constructed by using the GeoKG and the YAGO by using the administrative division case. Then, a set of geographic questions were defined and translated into queries. The query results have shown that GeoKG results are more accurate and complete than the YAGO’s with the enhancing state information. Additionally, the user evaluation verified these improvements, which indicates it is a promising powerful model for geographic knowledge representation. Numéro de notice : A2019-671 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.3390/ijgi8040184 Date de publication en ligne : 08/04/2019 En ligne : https://doi.org/10.3390/ijgi8040184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100286
in ISPRS International journal of geo-information > vol 8 n° 4 (April 2019) . - n° 184[article]