Détail de l'auteur
Auteur Peng Ye |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geoscience Knowledge Graph (GeoKG): Development, construction and challenges / Xueying Zhang in Transactions in GIS, vol 26 n° 6 (September 2022)
[article]
Titre : Geoscience Knowledge Graph (GeoKG): Development, construction and challenges Type de document : Article/Communication Auteurs : Xueying Zhang, Auteur ; Yi Huang, Auteur ; Chunju Zhang, Auteur ; Peng Ye, Auteur Année de publication : 2022 Article en page(s) : pp 2480 - 2494 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] corrélation
[Termes IGN] données localisées numériques
[Termes IGN] représentation des connaissances
[Termes IGN] réseau sémantiqueRésumé : (auteur) Big earth data is a cross-domain of geoscience and information science, which provides a novel perspective for solving geoscience problems. Most contemporary research is driven by data but neglect the potential value of knowledge. As a new scientific language in Geoscience, GeoKG is essential for understanding, representing, and mining geoscience knowledge, and can contribute to the integration of big earth data, geoscience knowledge, and geoscience models. However, research on GeoKG lack spatiotemporal perspectives in knowledge cognition, representation, acquisition and management. To this end, this article first outlines a cognitive mechanism from the human–machine double perspective and categorizes the characteristics and content of geoscience knowledge. To express evolution and complex natural rules, a knowledge representation framework is proposed through ‘state-process’ and ‘condition-result’ models. Aiming at multimodal data, a workflow is put forward to acquire knowledge from a small sample, a knowledge graph, a map, and a schematic diagram. Furthermore, we discuss the organization of GeoKG by improving existing data models, developing spatiotemporal correlation indexing and advancing knowledge graph completion. The concrete construction process of GeoKG is analyzed thoroughly in this study, which can support the synthetic analysis of big earth data, promote the development of knowledge engineering and provide a foundation for improving intelligent geoscience. Numéro de notice : A2022-949 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1111/tgis.12985 En ligne : https://doi.org/10.1111/tgis.12985 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102142
in Transactions in GIS > vol 26 n° 6 (September 2022) . - pp 2480 - 2494[article]Geographic Knowledge Graph (GeoKG): A formalized geographic knowledge representation / Shu Wang in ISPRS International journal of geo-information, vol 8 n° 4 (April 2019)
[article]
Titre : Geographic Knowledge Graph (GeoKG): A formalized geographic knowledge representation Type de document : Article/Communication Auteurs : Shu Wang, Auteur ; Xueying Zhang, Auteur ; Peng Ye, Auteur ; Mi Du, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : n° 184 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Langages informatiques
[Termes IGN] formalisation
[Termes IGN] langage de programmation
[Termes IGN] Nankin (Kiangsou)
[Termes IGN] représentation des connaissances
[Termes IGN] réseau sémantiqueRésumé : (auteur) Formalized knowledge representation is the foundation of Big Data computing, mining and visualization. Current knowledge representations regard information as items linked to relevant objects or concepts by tree or graph structures. However, geographic knowledge differs from general knowledge, which is more focused on temporal, spatial, and changing knowledge. Thus, discrete knowledge items are difficult to represent geographic states, evolutions, and mechanisms, e.g., the processes of a storm “{9:30-60 mm-precipitation}-{12:00-80 mm-precipitation}-…”. The underlying problem is the constructors of the logic foundation (ALC description language) of current geographic knowledge representations, which cannot provide these descriptions. To address this issue, this study designed a formalized geographic knowledge representation called GeoKG and supplemented the constructors of the ALC description language. Then, an evolution case of administrative divisions of Nanjing was represented with the GeoKG. In order to evaluate the capabilities of our formalized model, two knowledge graphs were constructed by using the GeoKG and the YAGO by using the administrative division case. Then, a set of geographic questions were defined and translated into queries. The query results have shown that GeoKG results are more accurate and complete than the YAGO’s with the enhancing state information. Additionally, the user evaluation verified these improvements, which indicates it is a promising powerful model for geographic knowledge representation. Numéro de notice : A2019-671 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.3390/ijgi8040184 Date de publication en ligne : 08/04/2019 En ligne : https://doi.org/10.3390/ijgi8040184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100286
in ISPRS International journal of geo-information > vol 8 n° 4 (April 2019) . - n° 184[article]