Détail de l'auteur
Auteur Spencer Dakin Kuiper |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Characterizing stream morphological features important for fish habitat using airborne laser scanning data / Spencer Dakin Kuiper in Remote sensing of environment, vol 272 (April 2022)
[article]
Titre : Characterizing stream morphological features important for fish habitat using airborne laser scanning data Type de document : Article/Communication Auteurs : Spencer Dakin Kuiper, Auteur ; Nicholas C. Coops, Auteur ; Piotr Tompalski, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bassin hydrographique
[Termes IGN] cours d'eau
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écosystème forestier
[Termes IGN] forêt ripicole
[Termes IGN] géomorphologie locale
[Termes IGN] gestion forestière durable
[Termes IGN] habitat animal
[Termes IGN] modèle numérique de surface
[Termes IGN] poisson (faune aquatique)
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] Vancouver (Colombie britannique)Résumé : (auteur) Understanding changes in salmonid populations and their habitat is a critical issue given changing climate, their importance as a keystone species, and their cultural significance. Terrain features such as slope, gradient, and morphology, as well as forest structure attributes including canopy cover, height, and presence of on ground coarse wood, all influence the quality and quantity of salmonid habitat in forested ecosystems. The increasing availability of Airborne Laser Scanning (ALS) data for forest applications offers an opportunity to utilize these data for assessing the quality and quantity of habitat, which is often costly and difficult to characterize. ALS data provides detailed and accurate Digital Elevation Models (DEMs) under forest canopies, which in turn enable the characterization of detailed stream networks, as well as stream and terrain attributes important to salmonids. At the Nahmint watershed on Vancouver Island, British Columbia, Canada, we sampled six, 200 m long stream reaches, describing a range of terrain and stream features following standard data collection protocols. Our objective in this research was to use ALS data to estimate three attributes from the 3D point cloud and DEM that are known to be important for salmonids, including bankfull width,instream wood and discrete stream morphological units. Results indicate that ALS-based estimates had strong, significant, correlations with field-measured attributes (with Pearson's correlation of 0.80 and 0.81 for bankfull width and instream wood, respectively). Bankfull width was slightly underestimated using the ALS data (Bias = −1.01 m; MAD = 1.89 m; RMSD = 2.05 m) and 80% of instream wood pieces were detected. Using ALS-derived predictors in a Random Forest model, discrete stream morphological units (i.e. pools, riffles, glides, cascades) were classified with an overall accuracy of 85%, with pools having the highest user's class accuracy at 96%. Results presented herein indicate that ALS data can be used to provide a fine scale characterization of stream attributes that are required to identify salmonid habitat, providing critical information for sustainable forest management decision making, and providing a foundation for advanced salmonid habitat modeling. Numéro de notice : A2022-283 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112948 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100301
in Remote sensing of environment > vol 272 (April 2022) . - n° 112948[article]