Détail de l'auteur
Auteur Marco Veloso |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Identification and classification of routine locations using anonymized mobile communication data / Gonçalo Ferreira in ISPRS International journal of geo-information, vol 11 n° 4 (April 2022)
[article]
Titre : Identification and classification of routine locations using anonymized mobile communication data Type de document : Article/Communication Auteurs : Gonçalo Ferreira, Auteur ; Ana Alves, Auteur ; Marco Veloso, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 228 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] données spatiotemporelles
[Termes IGN] migration pendulaire
[Termes IGN] mobilité urbaine
[Termes IGN] origine - destination
[Termes IGN] point d'intérêt
[Termes IGN] Portugal
[Termes IGN] précision sémantique
[Termes IGN] statistiques d'appels détaillés
[Termes IGN] téléphonie mobileRésumé : (auteur) Digital location traces are a relevant source of insights into how citizens experience their cities. Previous works using call detail records (CDRs) tend to focus on modeling the spatial and temporal patterns of human mobility, not paying much attention to the semantics of places, thus failing to model and enhance the understanding of the motivations behind people’s mobility. In this paper, we applied a methodology for identifying individual users’ routine locations and propose an approach for attaching semantic meaning to these locations. Specifically, we used circular sectors that correspond to cellular antennas’ signal areas. In those areas, we found that all contained points of interest (POIs), extracted their most important attributes (opening hours, check-ins, category) and incorporated them into the classification. We conducted experiments with real-world data from Coimbra, Portugal, and the initial experimental results demonstrate the effectiveness of the proposed methodology to infer activities in the user’s routine areas. Numéro de notice : A2022-419 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11040228 Date de publication en ligne : 29/03/2022 En ligne : https://doi.org/10.3390/ijgi11040228 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100306
in ISPRS International journal of geo-information > vol 11 n° 4 (April 2022) . - n° 228[article]