Détail de l'auteur
Auteur Ximena Pocco |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring scientific literature by textual and image content using DRIFT / Ximena Pocco in Computers and graphics, vol 103 (April 2022)
[article]
Titre : Exploring scientific literature by textual and image content using DRIFT Type de document : Article/Communication Auteurs : Ximena Pocco, Auteur ; Tiago da Silva, Auteur ; Jorge Poco, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse visuelle
[Termes IGN] bibliothèque numérique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corpus
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] recherche scientifique
[Termes IGN] similitude sémantiqueRésumé : (auteur) Digital libraries represent the most valuable resource for storing, querying, and retrieving scientific literature. Traditionally, the reader/analyst aims to compose a set of articles based on keywords, according to his/her preferences, and manually inspect the resulting list of documents. Except for the articles which share citations or common keywords, the results retrieved will be limited to those which fulfill a syntactic match. Besides, if instead of having an article as a reference, the user has an image, the process of finding and exploring articles with similar content becomes infeasible. This paper proposes a visual analytic methodology for exploring and analyzing scientific document collections that consider both textual and image content. The proposed technique relies on combining multiple Content-Based Image Retrieval (CBIR) components and multidimensional projection to map the documents to a visual space based on their similarity, thus enabling an interactive exploration. Moreover, we extend its analytical capabilities with visual resources to display complementary information on selected documents that uncover hidden patterns and semantic relations. We evidence the effectiveness of our methodology through three case studies and a user evaluation, which attest to its usefulness during the process of scientific collections exploration. Numéro de notice : A2022-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cag.2022.02.005 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.1016/j.cag.2022.02.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100332
in Computers and graphics > vol 103 (April 2022) . - pp 140 - 152[article]