Détail de l'auteur
Auteur Minshi Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A semantics-based trajectory segmentation simplification method / Minshi Liu in Journal of Geovisualization and Spatial Analysis, vol 5 n° 2 (December 2021)
[article]
Titre : A semantics-based trajectory segmentation simplification method Type de document : Article/Communication Auteurs : Minshi Liu, Auteur ; Guifang He, Auteur ; Yi Long, Auteur Année de publication : 2021 Article en page(s) : n° 19 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] caractérisation
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] itinéraire
[Termes IGN] précision sémantique
[Termes IGN] simplification de contourRésumé : (auteur) With the development of mobile positioning technology, a large amount of mobile trajectory data has been generated. Therefore, to store, process and mine trajectory data in a better way, trajectory data simplification is imperative. Current trajectory data simplification methods are either based on spatiotemporal features or semantic features, such as road network structure, but they do not consider semantic features of a trajectory stop. To overcome this limitation, this study presents a trajectory segmentation simplification method based on stop features. The proposed method first extracts the stop feature of a trajectory, then divides the trajectory into move segments and stop segments based on the stop features, and finally simplifies the obtained segments. The proposed method is verified by experiments on personal trajectory data and taxi trajectory data. Compared with the classic spatiotemporal simplification method, the proposed method has higher spatiotemporal and semantic accuracy under different simplification scales. The proposed method is especially suitable for trajectory data with more stop features. Numéro de notice : A2021-970 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-021-00088-5 Date de publication en ligne : 27/09/2021 En ligne : http://dx.doi.org/10.1007/s41651-021-00088-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100367
in Journal of Geovisualization and Spatial Analysis > vol 5 n° 2 (December 2021) . - n° 19[article]