Détail de l'auteur
Auteur Zhongshuo Du |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GCN-Denoiser: mesh denoising with graph convolutional networks / Yuefan Shen in ACM Transactions on Graphics, TOG, Vol 41 n° 1 (February 2022)
[article]
Titre : GCN-Denoiser: mesh denoising with graph convolutional networks Type de document : Article/Communication Auteurs : Yuefan Shen, Auteur ; Hongbo Fu, Auteur ; Zhongshuo Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 8 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] filtrage du bruit
[Termes IGN] maille triangulaire
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) In this article, we present GCN-Denoiser, a novel feature-preserving mesh denoising method based on graph convolutional networks (GCNs). Unlike previous learning-based mesh denoising methods that exploit handcrafted or voxel-based representations for feature learning, our method explores the structure of a triangular mesh itself and introduces a graph representation followed by graph convolution operations in the dual space of triangles. We show such a graph representation naturally captures the geometry features while being lightweight for both training and inference. To facilitate effective feature learning, our network exploits both static and dynamic edge convolutions, which allow us to learn information from both the explicit mesh structure and potential implicit relations among unconnected neighbors. To better approximate an unknown noise function, we introduce a cascaded optimization paradigm to progressively regress the noise-free facet normals with multiple GCNs. GCN-Denoiser achieves the new state-of-the-art results in multiple noise datasets, including CAD models often containing sharp features and raw scan models with real noise captured from different devices. We also create a new dataset called PrintData containing 20 real scans with their corresponding ground-truth meshes for the research community. Our code and data are available at https://github.com/Jhonve/GCN-Denoiser. Numéro de notice : A2022-302 Affiliation des auteurs : non IGN Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1145/3480168 Date de publication en ligne : 09/02/2022 En ligne : https://doi.org/10.1145/3480168 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100373
in ACM Transactions on Graphics, TOG > Vol 41 n° 1 (February 2022) . - n° 8[article]