Détail de l'auteur
Auteur Alireza Arabameri |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 949 - 974[article]