Détail de l'auteur
Auteur Daniel Marc G. dela Torre |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Phenology-based delineation of irrigated and rain-fed paddy fields with Sentinel-2 imagery in Google Earth Engine / Daniel Marc G. dela Torre in Geo-spatial Information Science, vol 24 n° 4 (October 2021)
[article]
Titre : Phenology-based delineation of irrigated and rain-fed paddy fields with Sentinel-2 imagery in Google Earth Engine Type de document : Article/Communication Auteurs : Daniel Marc G. dela Torre, Auteur ; Jay Gao, Auteur ; Cate Macinnis-Ng, Auteur ; Yan Shi, Auteur Année de publication : 2021 Article en page(s) : pp 695 - 710 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] Oryza (genre)
[Termes IGN] phénologie
[Termes IGN] rizièreRésumé : (auteur) Paddy rice agriculture is practiced in both rain-fed and irrigated ecosystems in the Philippines. However, small farms are prevalent in the region, and current satellite-based mapping techniques do not distinguish between the two ecosystems at farm scales. This study developed an approach to rapidly map irrigated and rain-fed paddy rice in Iloilo, Philippines at 10 m resolutions using Google Earth Engine. This approach used an ensemble of classifiers based on time-series vegetation indices to produce dry and wet seasonal maps for the entire province. Results showed a predominance of rain-fed rice areas in both seasons, with irrigated rice making up only one-fourth of the total rice area. The overall accuracy was achieved at 68% for the dry season and 75% for the wet season based on ground-acquired points and very high-resolution imagery. The two types of paddies were classified at accuracies up to 87%. Furthermore, the land cover maps showed a strong agreement with the municipal statistics. The resultant maps complement current official statistics and demonstrate the prowess of phenology-based mapping to create paddy inventories in a timely manner to inform food security and agricultural policies. Numéro de notice : A2021-969 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10095020.2021.1984183 En ligne : https://doi.org/10.1080/10095020.2021.1984183 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100385
in Geo-spatial Information Science > vol 24 n° 4 (October 2021) . - pp 695 - 710[article]