Détail de l'auteur
Auteur Lihu Dong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China / Longfei Xie in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)
[article]
Titre : Evaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China Type de document : Article/Communication Auteurs : Longfei Xie, Auteur ; Faris Rafi Almay Widagdo, Auteur ; Zheng Miao, Auteur ; Lihu Dong, Auteur ; Fengri Li, Auteur Année de publication : 2022 Article en page(s) : pp 309 - 319 Note générale : bibliographie Langues : Français (fre) Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] biométrie
[Termes IGN] Chine
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] hauteur des arbres
[Termes IGN] Larix olgensis
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] régression non linéaire
[Termes IGN] régression par quantileRésumé : (auteur) Tree height (H) is one of the most important tree variables and is widely used in growth and yield models, and its measurement is often time-consuming and costly. Hence, height–diameter (H–D) models have become a great alternative, providing easy-to-use and accurate tools for H prediction. In this study, H–D models were developed for Larix olgensis A. Henry in northeastern China. The Chapman–Richards function with three predictors (diameter at breast height, dominant tree height, and relative size of individual trees) performed best. Nonlinear mixed-effects (NLME) models and nonlinear quantile regressions (NQR9, nine quantiles; NQR5, five quantiles; and NQR3, three quantiles) were further used and improved the generalized H–D model, successfully providing accurate H predictions. In addition, the H predictions were calibrated using several measurements from subsamples, which were obtained from different sampling designs and sizes. The results indicated that the predictive accuracy was higher when calibrated by using any number of height measurements for the NLME model and more than three height measurements for the NQR3, NQR5, and NQR9 models. The best sampling strategy for the NLME and NQR models involved sampling medium-sized trees. Overall, the newly developed H–D models can provide highly accurate height predictions for L. olgensis. Numéro de notice : A2022-313 Affiliation des auteurs : non IGN Autre URL associée : Draft Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1139/cjfr-2021-0184 En ligne : https://doi.org/10.1139/cjfr-2021-0184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100412
in Canadian Journal of Forest Research > Vol 52 n° 3 (March 2022) . - pp 309 - 319[article]