Détail de l'auteur
Auteur Decao Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds / Jiayuan Lin in Urban Forestry & Urban Greening, vol 69 (March 2022)
[article]
Titre : Estimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds Type de document : Article/Communication Auteurs : Jiayuan Lin, Auteur ; Decao Chen, Auteur ; Wenjian Wu, Auteur ; Xiaohan Liao, Auteur Année de publication : 2022 Article en page(s) : n° 127521 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] allométrie
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt urbaine
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Urban forest is a crucial part of urban ecological environment. The accurate estimation of its tree aboveground biomass (AGB) is of significant value to evaluate urban ecological functions and estimate urban forest carbon storage. It has a high accuracy to estimate the forest AGB with field measured canopy structure parameters, but unsuitable for large-scale operations. Limited by low spatial resolution or spectral saturation, the estimated forest AGBs based on various satellite remotely sensed data have relatively low accuracies. In contrast, Unmanned Aerial Vehicle (UAV) remote sensing provides a promising way to accurately estimate the tree AGB of fragmented urban forest. In this study, taking an artificial urban forest in Ma'anxi Wetland Park in Chongqing City, China as an example, we used UAVs equipped with a digital camera and a LiDAR to acquire two point cloud data. One was produced from overlapping images using Structure from Motion (SfM) photogrammetry, and the other was resolved from laser scanned raw data. The dual point clouds were combined to extract individual tree height (H) and canopy radius (Rc), which were then input to the newly established allometric equation with tree H and Rc as predictor variables to obtain the AGBs of all dawn redwood trees in study area. In accuracy assessment, the coefficient of determination (R2) and Root Mean Square Error (RMSE) of extracted H were 0.9341 and 0.59 m; the R2 and RMSE of extracted Rc were 0.9006 and 0.28 m; the R2 and RMSE of estimated AGB were 0.9452 and 17.59 kg. These results proved the feasibility and effectiveness of applying dual-source UAV point cloud data and the new allometric equation on H and Rc to accurate AGB estimation of urban forest trees. Numéro de notice : A2022-319 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ufug.2022.127521 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1016/j.ufug.2022.127521 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100425
in Urban Forestry & Urban Greening > vol 69 (March 2022) . - n° 127521[article]