Détail de l'auteur
Auteur Dian Yu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion / Kun Li in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
[article]
Titre : HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion Type de document : Article/Communication Auteurs : Kun Li, Auteur ; Wei Zhang, Auteur ; Dian Yu, Auteur ; Xin Tian, Auteur Année de publication : 2022 Article en page(s) : pp 30 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image floue
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau neuronal profondRésumé : (Auteur) Traditional approaches mainly fuse a hyperspectral image (HSI) with a high-resolution multispectral image (MSI) to improve the spatial resolution of the HSI. However, such improvement in the spatial resolution of HSIs is still limited because the spatial resolution of MSIs remains low. To further improve the spatial resolution of HSIs, we propose HyperNet, a deep network for the fusion of HSI, MSI, and panchromatic image (PAN), which effectively injects the spatial details of an MSI and a PAN into an HSI while preserving the spectral information of the HSI. Thus, we design HyperNet on the basis of a uniform fusion strategy to solve the problem of complex fusion of three types of sources (i.e., HSI, MSI, and PAN). In particular, the spatial details of the MSI and the PAN are extracted by multiple specially designed multiscale-attention-enhance blocks in which multi-scale convolution is used to adaptively extract features from different reception fields, and two attention mechanisms are adopted to enhance the representation capability of features along the spectral and spatial dimensions, respectively. Through the capability of feature reuse and interaction in a specially designed dense-detail-insertion block, the previously extracted features are subsequently injected into the HSI according to the unidirectional feature propagation among the layers of dense connection. Finally, we construct an efficient loss function by integrating the multi-scale structural similarity index with the norm, which drives HyperNet to generate high-quality results with a good balance between spatial and spectral qualities. Extensive experiments on simulated and real data sets qualitatively and quantitatively demonstrate the superiority of HyperNet over other state-of-the-art methods. Numéro de notice : A2022-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.04.001 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100461
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 30 - 44[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022061 SL Revue Centre de documentation Revues en salle Disponible 081-2022063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt