Détail de l'auteur
Auteur Sylvain Lamprier |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques / Jean-Yves Franceschi (2022)
Titre : Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques Type de document : Thèse/HDR Auteurs : Jean-Yves Franceschi, Auteur ; Sylvain Lamprier, Directeur de thèse ; Patrick Gallinari, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 304 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de Sorbonne UniversitéLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] données spatiotemporelles
[Termes IGN] équation différentielle
[Termes IGN] processus stochastique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] système dynamiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement. Note de contenu : 1- Motivation
2- Time series representation learning
3- State-space predictive models for spatiotemporal data
4- Analysis of GANs’ training dynamics
5- ConclusionNuméro de notice : 15203 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Paris : 2022 DOI : sans En ligne : https://tel.hal.science/tel-03591720 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100472