Détail de l'auteur
Auteur Bujar Fetai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Revising cadastral data on land boundaries using deep learning in image-based mapping / Bujar Fetai in ISPRS International journal of geo-information, vol 11 n° 5 (May 2022)
[article]
Titre : Revising cadastral data on land boundaries using deep learning in image-based mapping Type de document : Article/Communication Auteurs : Bujar Fetai, Auteur ; Dejan Grigillo, Auteur ; Anka Lisec, Auteur Année de publication : 2022 Article en page(s) : n° 298 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cadastre étranger
[Termes IGN] cartographie cadastrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] données cadastrales
[Termes IGN] limite cadastrale
[Termes IGN] point d'appui
[Termes IGN] SlovénieRésumé : (auteur) One of the main concerns of land administration in developed countries is to keep the cadastral system up to date. The goal of this research was to develop an approach to detect visible land boundaries and revise existing cadastral data using deep learning. The convolutional neural network (CNN), based on a modified architecture, was trained using the Berkeley segmentation data set 500 (BSDS500) available online. This dataset is known for edge and boundary detection. The model was tested in two rural areas in Slovenia. The results were evaluated using recall, precision, and the F1 score—as a more appropriate method for unbalanced classes. In terms of detection quality, balanced recall and precision resulted in F1 scores of 0.60 and 0.54 for Ponova vas and Odranci, respectively. With lower recall (completeness), the model was able to predict the boundaries with a precision (correctness) of 0.71 and 0.61. When the cadastral data were revised, the low values were interpreted to mean that the lower the recall, the greater the need to update the existing cadastral data. In the case of Ponova vas, the recall value was less than 0.1, which means that the boundaries did not overlap. In Odranci, 21% of the predicted and cadastral boundaries overlapped. Since the direction of the lines was not a problem, the low recall value (0.21) was mainly due to overly fragmented plots. Overall, the automatic methods are faster (once the model is trained) but less accurate than the manual methods. For a rapid revision of existing cadastral boundaries, an automatic approach is certainly desirable for many national mapping and cadastral agencies, especially in developed countries. Numéro de notice : A2022-357 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11050298 Date de publication en ligne : 04/05/2022 En ligne : https://doi.org/10.3390/ijgi11050298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100562
in ISPRS International journal of geo-information > vol 11 n° 5 (May 2022) . - n° 298[article]