Détail de l'auteur
Auteur Xiaoqi Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Clustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Clustering with implicit constraints: A novel approach to housing market segmentation Type de document : Article/Communication Auteurs : Xiaoqi Zhang, Auteur ; Yanqiao Zheng, Auteur ; Qiong Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 585 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme glouton
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par nuées dynamiques
[Termes IGN] contrainte topologique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] programmation par contraintes
[Termes IGN] segmentation
[Termes IGN] structure spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Constrained clustering has been widely studied and outperforms both the traditional unsupervised clustering and experience-oriented approaches. However, the existing literature on constrained clustering concentrates on spatially explicit constraints, while many constraints in housing market studies are implicit. Ignoring the implicit constraints will result in unreliable clustering results. This article develops a novel framework for constrained clustering, which takes implicit constraints into account. Specifically, the research extends the classical greedy searching algorithm by adding one back-and-forth searching step, efficiently coping with the order sensitivity. Via evaluation on both synthetic and real data sets, it turns out that the proposed algorithm outperforms existing algorithms, even when only the traditional pairwise constraints are provided. In an application to a concrete housing market segmentation problem, the proposed algorithm shows its power to accommodate user-specified homogeneity criteria to extract hidden information on the underlying urban spatial structure. Numéro de notice : A2022-362 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12878 Date de publication en ligne : 26/12/2021 En ligne : https://doi.org/10.1111/tgis.12878 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100581
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 585 - 608[article]